Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Luminescence ; 39(1): e4676, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38286600

RESUMO

Isoniazid is a drug for treating tuberculosis, but hydrazine (N2 H4 ), the major metabolite of isoniazid, can cause hepatotoxicity. Therefore, monitoring the content of N2 H4 in time is of great significance for studying the hepatotoxicity induced by isoniazid. In this study, a near-infrared fluorescent probe (BC-N) was designed and synthesized based on the specific reaction of acetyl ester with N2 H4 . BC-N exhibits excellent selectivity, sensitivity, and biocompatibility. In addition, BC-N is applied in the visualization of N2 H4 produced from isoniazid in living cells and is a potential tool for monitoring hepatotoxicity induced by isoniazid.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Isoniazida , Humanos , Corantes Fluorescentes , Hidrazinas
2.
Front Chem ; 10: 1025723, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36339043

RESUMO

Hydrogen peroxide (H2O2) as a crucial reactive oxygen species (ROS) plays a crucial role in redox signaling in physiological and pathological processes of living cells. Its normal production is closely related to signal transduction of living cells. Overproduction of H2O2 in vivo has been proved to be related to many diseases. Some were developed to reveal the roles of H2O2. However, current fluorescent probes for the detection of H2O2 are restricted in their short emission wavelengths and small Stokes shifts that significantly decrease the sensitivity of detection and cellular visualization. In this work, a novel fluorescent probe BC-B was designed and synthesized with pinacol phenylboronic acid ester as a recognition group and near-infrared fluorophore BC-OH as a reporter group. BC-B probe exhibits a large Stokes shift (122 nm) and near-infrared emission (672 nm), showing an excellent selectivity and sensitivity in detection of H2O2 with the limit of 0.003 µmol/L. Confocal fluorescence imaging further demonstrates that BC-B can be used for detecting endogenous H2O2 in living cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...